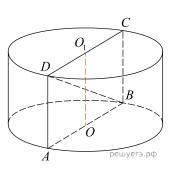
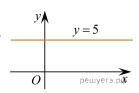
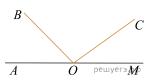
Централизованное тестирование по математике, 2013


При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


1. Среди чисел $-6; \frac{1}{6}; 6^{-1}; -0, 6; \sqrt{6}$ выберите число, противоположное числу 6.

1)-6 2)
$$\frac{1}{6}$$
 3) 6^{-1} 4) $-0,6$ 5) $\sqrt{6}$


2. Пусть O и O_1 — центры оснований цилиндра, изображенного на рисунке. Тогда образующей цилиндра является отрезок:

- 1) BO 2) BC 3) BA 4) BD 5) OO₁
- **3.** Среди точек $O(0;0),\ B(5;0),\ C(-\sqrt{5};\sqrt{5}),\ D(0;-5),\ E(-7;5)$ выберите ту, которая принадлежит графику функции, изображённому на рисунке:

- 1) O 2) B 3) C 4) D 5) E
- **4.** Найдите значение выражения $\left(7\frac{3}{4} 7\frac{17}{24}\right) \cdot 4, 8 0, 7.$ 1) 0,5 2) 0,9 3) -0,9 4) -0,5 5) 2,4
- **5.** Одно число меньше другого на 75, что составляет 15% большего числа. Найдите меньшее число.
 - 1) 490 2) 100 3) 580 4) 575 5) 425
- **6.** На рисунке изображены развернутый угол AOM и лучи OB и OC. Известно, что $\angle AOC = 144^{\circ}$, $\angle BOM = 136^{\circ}$. Найдите величину угла BOC.

1) 44° 2) 36° 3) 100° 4) 54° 5) 46°

7. Образующая конуса равна 32 и наклонена к плоскости основания под углом 60°. Найдите площадь боковой поверхности конуса.

- 1) $512\sqrt{3}\pi$

- 2) 1024π 3) 512π 4) 256π 5) $1024\sqrt{3}\pi$

8. Расположите числа $1,66; \frac{12}{7}; 1,(6)$ в порядке возрастания.

1) 1,66; 1,(6);
$$\frac{12}{7}$$
 2) 1,(6); 1,66; $\frac{12}{7}$ 3) 1,(6); $\frac{12}{7}$; 1,66 4) 1,66; $\frac{12}{7}$; 1,(6) 5) $\frac{12}{7}$; 1,66; 1,(6)

9. Одна из сторон прямоугольника на 7 см длиннее другой, а его площадь равна 98 см^2 . Уравнение, одним из корней которого является длина меньшей стороны прямоугольника, имеет вид:

1)
$$x^2 + 7x + 98 = 0$$
 2) $x^2 + 98x - 7 = 0$ 3) $x^2 - 7x - 98 = 0$ 4) $x^2 + 7x - 98 = 0$ 5) $x^2 - 98x + 7 = 0$

10. Точки A(6; -4) и B(2; 1) — вершины квадрата ABCD. Периметр квадрата равен:

1) 25 2)
$$4\sqrt{41}$$
 3) $4\sqrt{73}$ 4) 36 5) $2\sqrt{41}$

11. Упростите выражение
$$\frac{11\sqrt{11}+7\sqrt{7}}{\sqrt{11}+\sqrt{7}}-\sqrt{77}+\frac{8\sqrt{7}}{\sqrt{11}-\sqrt{7}}$$

$$1) \frac{7}{\sqrt{11}-\sqrt{7}} \qquad 2) \frac{1}{\sqrt{11}+\sqrt{7}} \qquad 3) \sqrt{77} \qquad 4) 22 \qquad 5) 32$$

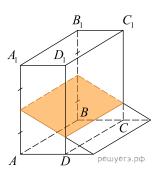
12. Решением неравенства

$$\frac{17}{5} - \frac{3x^2 + 2x}{3} < \frac{7 - 5x^2}{5}$$

является промежуток:

1)
$$(3; +\infty)$$
 2) $(-\infty; -3)$ 3) $(-\infty; 3)$ 4) $(\frac{1}{3}; +\infty)$ 5) $(-\infty; \frac{1}{3})$

13. Найдите длину средней линии прямоугольной трапеции с острым углом 60°, у которой большая боковая сторона и большее основание равны 4.


1) 2 2) 3 3)
$$2\sqrt{3}$$
 4) $4\sqrt{3}$ 5) 6

14. Упростите выражение

$$\left(3+\frac{9b^2+a^2-c^2}{2ab}\right):(a+3b+c)\cdot 2ab.$$
 1) $3b+a+c$ 2) $3b-a-c$ 3) 3 4) $3b+a-c$ 5) $4a^2b^2$

15. Найдите сумму целых решений неравенства $4(x-2) > (x-2)^2$.

16. $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед такой, что AB = 16, AD = 2. Через середины ребер AA_1 и BB_1 проведена плоскость (см.рис.), составляющая угол 60° с плоскостью основания ABCD. Найдите площадь сечения параллелепипеда этой плоскостью.

1)
$$32\sqrt{2}$$
 2) 32 3) $32\sqrt{3}$ 4) 16 5) 64

17. Сумма наибольшего и наименьшего значений функции

$$y = (2\sin 2x + 2\cos 2x)^2$$

равна:

18. Корень уравнения

$$\log_{1,8} \frac{4-3x}{2x-7} + \log_{1,8} \left((4-3x)(2x-7) \right) = 0$$

(или сумма корней, если их несколько) принадлежит промежутку:

1)
$$[-1;0]$$
 2) $[0;1)$ 3) $(1;2)$ 4) $[3;4)$ 5) $[4;5)$

- **19.** Автомобиль проехал некоторое расстояние, израсходовав 24 л топлива. Расход топлива при этом составил 9 л на 100 км пробега. Затем автомобиль существенно увеличил скорость, в результате чего расход топлива вырос до 12 л на 100 км. Сколько литров топлива понадобится автомобилю, чтобы проехать такое же расстояние?
- **20.** Решите уравнение $\sqrt{x-3} \sqrt{(x+1)(x-3)} = 0$. В ответ запишите сумму его корней (корень, если он один).
- 21. Основание остроугольного равнобедренного треугольника равно 4, а синус противоположного основанию угла равен 0,6. Найдите площадь треугольника.
 - 22. Пусть (x;y) целочисленное решение системы уравнений

$$\begin{cases} 2y - x = -7, \\ 9y^2 + 6xy + x^2 = 9. \end{cases}$$

Найдите сумму x+y.

- **23.** Найдите наибольшее целое решение неравенства $5^{3x-44} \cdot 7^{x-10} > 35^{2x-27}$.
- **24.** Найдите количество корней уравнения $32\sin 2x + 8\cos 4x = -1$ на промежутке $\left[-\pi; \frac{\pi}{2} \right]$.
- **25.** Геометрическая прогрессия со знаменателем 9 содержит 10 членов. Сумма всех членом прогрессии равна 50. Найдите сумму всех членов прогрессии с четными номерами.
 - 26. Найдите сумму корней уравнения

$$|(x-7)(x-12)| \cdot (|x-4|+|x-14|+|x-9|) = 11(x-7) \times (12-x).$$

- **27.** Из города A в город B, расстояние между которыми 140 км, одновременно выезжают два автомобиля. Скорость первого автомобиля на 10 км/ч больше скорости второго, но он делает в пути остановку на 20 мин. Найдите наибольшее значение скорости (в км/ч) первого автомобиля, при движении с которой он прибудет в B не позже второго.
- **28.** Из точки A проведены к окружности радиусом 6 касательная AB (B точка касания) и секущая, проходящая через центр окружности и пересекающая ее в точках D и C (AD < AC). Найдите площадь S треугольника ABC, если длина отрезка AC в 3 раза больше длины отрезка касательной. В ответ запишите значение выражения 10S.

29. Если
$$\cos(\alpha+13^\circ)=\frac{\sqrt{17}}{17},\ 0<\alpha+13^\circ<90^\circ,$$
 то значение выражения $4\sqrt{34}\cos(\alpha+58^\circ)$ равно ...

30. Решите уравнение

$$\frac{40x^2}{x^4 + 25} = x^2 + 2\sqrt{5}x + 9.$$

В ответ запишите значение выражения $x \cdot |x|$, где x — корень уравнения.